Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Benzoylanilinium chloride monohydrate

Shui-Ping Deng, Shan Liu, Guang-Liang Song and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 31 October 2007; accepted 1 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.068; wR factor = 0.174; data-to-parameter ratio = 15.2.

In the cation of the title compound, $C_{13}H_{12}NO^+ \cdot Cl^- \cdot H_2O$, the rings are oriented at a dihedral angle of 53.62 (3)°. In the crystal structure, $N-H\cdots \cdot Cl$, $N-H\cdots \cdot O$ and $O-H\cdots \cdot Cl$ hydrogen bonds link the ions and water molecules, forming a three-dimensional network.

Related literature

For related literature, see: Shetty *et al.* (1999); Zhu *et al.* (2005). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{13}H_{12}NO^+ \cdot Cl^- \cdot H_2O} \\ M_r = 251.70 \\ {\rm Monoclinic, P_{2_1}/c} \\ a = 4.771 (1) {\rm ~\AA} \\ b = 17.450 (4) {\rm ~\AA} \\ c = 15.277 (3) {\rm ~\AA} \\ \beta = 90.50 (3)^\circ \end{array}$

 $V = 1271.8 \text{ (5) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.29 \text{ mm}^{-1}$ T = 298 (2) K $0.30 \times 0.10 \times 0.10 \text{ mm}$ Data collection

```
Enraf-Nonius CAD-4
diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{min} = 0.918, T_{max} = 0.972
2786 measured reflections
Refinement
```

 $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.174$ S = 1.032479 reflections 163 parameters 3 restraints 2479 independent reflections 1522 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ 3 standard reflections frequency: 120 min intensity decay: none

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N-H0A\cdots Cl$	0.89	2.38	3.247 (3)	165
$N - H0B \cdot \cdot \cdot Cl^{i}$	0.89	2.29	3.178 (3)	175
$N - H0C \cdot \cdot \cdot OW$	0.89	1.87	2.748 (5)	169
OW−HWB···Cl ⁱⁱ	0.87 (5)	2.38 (3)	3.226 (4)	165 (5)
$OW-HWA\cdots Cl^{iii}$	0.86 (4)	2.35 (4)	3.204 (4)	176 (5)
Symmetry codes:	(i) $x - 1, y$	v, z; (ii)	-x + 2, -y + 1, -x + 2, -y + 1, -y +	-z + 2; (iii)
-x + 1, -y + 1, -z + 2				

Data collection: *CAD-4 Software* (Enraf–Nonius, 1985); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the Center for Testing and Analysis, Nanjing University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2364).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Enraf–Nonius (1985). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shetty, A. S., Liu, E. B., Lachicotte, R. J. & Jenekhe, S. A. (1999). *Chem. Mater.* 11, 2292–2295.

Zhu, H.-J., Wang, D.-D., Song, G.-L., Wang, J.-T. & Wang, K.-L. (2005). Acta Cryst. E61, o2209–o2210. supplementary materials

Acta Cryst. (2007). E63, o4603 [doi:10.1107/S1600536807055195]

2-Benzoylanilinium chloride monohydrate

S.-P. Deng, S. Liu, G.-L. Song and H.-J. Zhu

Comment

(2-aminophenyl)(phenyl)methanone is one of the important monomers, being utilized to synthesize oligomers containing quinoline unit (Shetty *et al.*, 1999). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). Rings A (C1–C6) and B (C8–C13) are, of course, planar and they are oriented at a dihedral angle of A/B = 53.62 (3)°.

In the crystal structure, N—H…Cl, N—H…O and O—H…Cl hydrogen bonds (Table 1) link the molecules to form a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

(2-aminophenyl)(phenyl)methanone was prepared by a method reported recently with a little modification (Zhu *et al.*, 2005). Crystals of (I) suitable for X-ray analysis were obtained by dissolving (2-aminophenyl)(phenyl)methanone (1.0 g, 5.1 mmol) in a solution of hydrochloride acid (5 ml, 1.0 mol/l) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement

H atoms (for H₂O) were located in difference syntheses and refined isotropically [O—H = 0.86 (4) and 0.87 (5) Å, $U_{iso}(H) = 0.10$ (2) and 0.11 (2) Å²]. The remaining H atoms were positioned geometrically with N—H = 0.89 Å (for NH₃) and C—H = 0.93 Å for aromatic H atoms, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.2 for aromatic H and x = 1.5 for NH₃ H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

2-Benzoylanilinium chloride monohydrate

Crystal data	
$C_{13}H_{12}NO^+ \cdot CI^- \cdot H_2O$	$F_{000} = 528$
$M_r = 251.70$	$D_{\rm x} = 1.315 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 4.771 (1) Å	$\theta = 9 - 12^{\circ}$
<i>b</i> = 17.450 (4) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 15.277 (3) Å	T = 298 (2) K
$\beta = 90.50 \ (3)^{\circ}$	Needle, colorless
$V = 1271.8 (5) \text{ Å}^3$	$0.30\times0.10\times0.10\ mm$
Z = 4	

Data collection

$R_{\rm int} = 0.065$
$\theta_{\text{max}} = 26.0^{\circ}$
$\theta_{\min} = 1.8^{\circ}$
$h = -5 \rightarrow 5$
$k = 0 \rightarrow 21$
$l = 0 \rightarrow 18$
3 standard reflections
every 120 min
intensity decay: none

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.174$	$w = 1/[\sigma^2(F_o^2) + (0.07P)^2 + 0.6P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
2479 reflections	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
163 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl	1.0018 (2)	0.34988 (6)	1.01031 (6)	0.0466 (3)
OW	0.4922 (7)	0.56862 (19)	0.8837 (2)	0.0602 (9)
HWA	0.366 (8)	0.591 (3)	0.914 (3)	0.10 (2)*
HWB	0.632 (7)	0.596 (3)	0.903 (4)	0.11 (2)*
0	-0.0034 (6)	0.47495 (18)	0.81909 (19)	0.0541 (8)
Ν	0.4887 (6)	0.41120 (18)	0.88813 (19)	0.0394 (8)
H0A	0.6493	0.3993	0.9149	0.059*
H0B	0.3457	0.3968	0.9213	0.059*
H0C	0.4809	0.4616	0.8794	0.059*
C1	0.6114 (11)	0.2658 (3)	0.7154 (3)	0.0650 (13)
H1A	0.7167	0.2215	0.7081	0.078*
C2	0.4379 (11)	0.2909 (3)	0.6492 (3)	0.0651 (14)
H2A	0.4250	0.2633	0.5973	0.078*
C3	0.2834 (10)	0.3566 (3)	0.6594 (3)	0.0585 (12)
H3A	0.1667	0.3732	0.6141	0.070*
C4	0.2994 (8)	0.3992 (2)	0.7374 (2)	0.0408 (9)
C5	0.4727 (8)	0.3716 (2)	0.8040 (2)	0.0384 (9)
C6	0.6292 (9)	0.3067 (2)	0.7928 (3)	0.0516 (11)
H6A	0.7479	0.2899	0.8375	0.062*
C7	0.1231 (8)	0.4689 (2)	0.7509 (3)	0.0432 (10)
C8	0.1051 (8)	0.5295 (3)	0.6834 (3)	0.0457 (10)
C9	-0.0827 (10)	0.5888 (3)	0.6937 (3)	0.0626 (13)
H9A	-0.2023	0.5887	0.7415	0.075*
C10	-0.0957 (12)	0.6478 (3)	0.6347 (4)	0.0761 (15)
H10A	-0.2215	0.6877	0.6437	0.091*
C11	0.0721 (12)	0.6489 (3)	0.5634 (3)	0.0679 (14)

supplementary materials

H11A	0.0594	0.6887	0.5231	0.082*
C12	0.2563 (13)	0.5918 (3)	0.5519 (3)	0.0771 (16)
H12A	0.3717	0.5923	0.5032	0.093*
C13	0.2776 (11)	0.5322 (3)	0.6115 (3)	0.0638 (13)
H13A	0.4093	0.4937	0.6029	0.077*

Atomic displacement parameters $(Å^2)$

Cl0.0380 (5)0.0552 (6)0.0465 (6)0.0004 (5)0.0016 (4)0.0006 (5)OW0.0421 (18)0.062 (2)0.076 (2)-0.0039 (17)0.0082 (17)-0.0183 (17)O0.0365 (15)0.074 (2)0.0516 (18)0.0013 (14)0.0056 (14)0.0060 (15)N0.0293 (16)0.052 (2)0.0368 (17)-0.0025 (15)0.0005 (14)0.0011 (15)C10.075 (3)0.044 (3)0.076 (3)0.005 (2)0.001 (3)-0.004 (2)C20.089 (4)0.050 (3)0.057 (3)-0.008 (3)0.066 (3)-0.014 (2)C30.062 (3)0.063 (3)0.049 (2)-0.009 (3)-0.008 (2)-0.002 (2)C40.036 (2)0.043 (2)0.044 (2)-0.0054 (18)0.0012 (17)0.0018 (18)C50.035 (2)0.041 (2)0.039 (2)-0.0065 (18)0.0046 (16)0.0012 (17)C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.008 (17)0.000 (2)C70.031 (2)0.059 (3)0.043 (2)-0.005 (2)-0.008 (17)0.000 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.002 (2)C90.054 (3)0.069 (3)0.045 (3)0.016 (3)-0.010 (3)0.003 (3)C110.093 (4)0.050 (3)0.060 (3)-0.006 (3)-0.017 (3)0.006 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.017 (3)0.008 (2)		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
OW0.0421 (18)0.062 (2)0.076 (2)-0.0039 (17)0.0082 (17)-0.0183 (17)O0.0365 (15)0.074 (2)0.0516 (18)0.0013 (14)0.0056 (14)0.0060 (15)N0.0293 (16)0.052 (2)0.0368 (17)-0.0025 (15)0.0005 (14)0.0011 (15)C10.075 (3)0.044 (3)0.076 (3)0.005 (2)0.001 (3)-0.004 (2)C20.089 (4)0.050 (3)0.057 (3)-0.008 (3)0.006 (3)-0.014 (2)C30.062 (3)0.063 (3)0.049 (2)-0.009 (3)-0.008 (2)-0.002 (2)C40.036 (2)0.043 (2)0.044 (2)-0.0054 (18)0.0012 (17)0.0018 (18)C50.035 (2)0.041 (2)0.039 (2)-0.0056 (18)0.0046 (16)0.0012 (17)C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.008 (17)0.000 (2)C70.031 (2)0.059 (3)0.040 (2)-0.0052 (19)-0.0088 (17)0.000 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.022 (2)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)-0.010 (3)0.003 (3)C110.093 (4)0.050 (3)0.060 (3)-0.006 (3)-0.017 (3)0.006 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.017 (3)0.008 (2)	Cl	0.0380 (5)	0.0552 (6)	0.0465 (6)	0.0004 (5)	0.0016 (4)	0.0006 (5)
O0.0365 (15)0.074 (2)0.0516 (18)0.0013 (14)0.0056 (14)0.0060 (15)N0.0293 (16)0.052 (2)0.0368 (17)-0.0025 (15)0.0005 (14)0.0011 (15)C10.075 (3)0.044 (3)0.076 (3)0.005 (2)0.001 (3)-0.004 (2)C20.089 (4)0.050 (3)0.057 (3)-0.008 (3)0.006 (3)-0.014 (2)C30.062 (3)0.063 (3)0.049 (2)-0.009 (3)-0.008 (2)-0.002 (2)C40.036 (2)0.043 (2)0.044 (2)-0.0054 (18)0.0012 (17)0.0018 (18)C50.035 (2)0.041 (2)0.039 (2)-0.0065 (18)0.0046 (16)0.0012 (17)C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.008 (17)0.000 (2)C70.031 (2)0.059 (3)0.040 (2)-0.0082 (19)-0.008 (17)0.000 (2)C80.038 (2)0.056 (3)0.045 (3)0.016 (3)0.006 (2)0.006 (3)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)-0.010 (3)0.003 (3)C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.017 (3)0.006 (3)C110.093 (4)0.050 (3)0.060 (3)-0.006 (3)-0.017 (3)0.008 (3)C120.109 (5)0.066 (3)0.056 (3)0.010 (3)0.014 (3)0.008 (2)	OW	0.0421 (18)	0.062 (2)	0.076 (2)	-0.0039 (17)	0.0082 (17)	-0.0183 (17)
N0.0293 (16)0.052 (2)0.0368 (17)-0.0025 (15)0.0005 (14)0.0011 (15)C10.075 (3)0.044 (3)0.076 (3)0.005 (2)0.001 (3)-0.004 (2)C20.089 (4)0.050 (3)0.057 (3)-0.008 (3)0.006 (3)-0.014 (2)C30.062 (3)0.063 (3)0.049 (2)-0.009 (3)-0.008 (2)-0.002 (2)C40.036 (2)0.043 (2)0.044 (2)-0.0054 (18)0.0012 (17)0.0118 (18)C50.035 (2)0.041 (2)0.039 (2)-0.0065 (18)0.0046 (16)0.0012 (17)C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.003 (2)0.000 (2)C70.031 (2)0.059 (3)0.040 (2)-0.0082 (19)-0.0008 (17)0.000 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.002 (2)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)0.006 (2)0.006 (3)C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.017 (3)0.006 (3)C110.093 (4)0.050 (3)0.060 (3)-0.006 (3)-0.017 (3)0.008 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.017 (3)0.008 (3)C130.075 (3)0.056 (3)0.060 (3)0.010 (3)0.014 (3)0.008 (2)	0	0.0365 (15)	0.074 (2)	0.0516 (18)	0.0013 (14)	0.0056 (14)	0.0060 (15)
C10.075 (3)0.044 (3)0.076 (3)0.005 (2)0.001 (3)-0.004 (2)C20.089 (4)0.050 (3)0.057 (3)-0.008 (3)0.006 (3)-0.014 (2)C30.062 (3)0.063 (3)0.049 (2)-0.009 (3)-0.008 (2)-0.002 (2)C40.036 (2)0.043 (2)0.044 (2)-0.0054 (18)0.0012 (17)0.0018 (18)C50.035 (2)0.041 (2)0.039 (2)-0.0065 (18)0.0046 (16)0.0012 (17)C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.003 (2)0.000 (2)C70.031 (2)0.059 (3)0.040 (2)-0.0082 (19)-0.0028 (18)0.002 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.002 (2)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)0.006 (2)0.006 (3)C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.017 (3)0.003 (3)C110.093 (4)0.050 (3)0.066 (3)-0.006 (3)-0.017 (3)0.008 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.017 (3)0.008 (3)C130.075 (3)0.056 (3)0.060 (3)0.010 (3)0.014 (3)0.008 (2)	Ν	0.0293 (16)	0.052 (2)	0.0368 (17)	-0.0025 (15)	0.0005 (14)	0.0011 (15)
C20.089 (4)0.050 (3)0.057 (3)-0.008 (3)0.006 (3)-0.014 (2)C30.062 (3)0.063 (3)0.049 (2)-0.009 (3)-0.008 (2)-0.002 (2)C40.036 (2)0.043 (2)0.044 (2)-0.0054 (18)0.0012 (17)0.0018 (18)C50.035 (2)0.041 (2)0.039 (2)-0.0065 (18)0.0046 (16)0.0012 (17)C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.003 (2)0.000 (2)C70.031 (2)0.059 (3)0.040 (2)-0.0082 (19)-0.0088 (17)0.000 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.002 (2)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)0.006 (2)0.006 (3)C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.017 (3)0.006 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.017 (3)0.008 (3)C130.075 (3)0.056 (3)0.060 (3)0.010 (3)0.014 (3)0.008 (2)	C1	0.075 (3)	0.044 (3)	0.076 (3)	0.005 (2)	0.001 (3)	-0.004 (2)
C30.062 (3)0.063 (3)0.049 (2)-0.009 (3)-0.008 (2)-0.002 (2)C40.036 (2)0.043 (2)0.044 (2)-0.0054 (18)0.0012 (17)0.0018 (18)C50.035 (2)0.041 (2)0.039 (2)-0.0065 (18)0.0046 (16)0.0012 (17)C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.003 (2)0.000 (2)C70.031 (2)0.059 (3)0.040 (2)-0.0082 (19)-0.0088 (17)0.000 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.002 (2)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)0.006 (2)0.006 (3)C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.017 (3)0.003 (3)C110.093 (4)0.050 (3)0.066 (3)0.001 (3)0.017 (3)0.008 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.014 (3)0.008 (2)	C2	0.089 (4)	0.050 (3)	0.057 (3)	-0.008 (3)	0.006 (3)	-0.014 (2)
C40.036 (2)0.043 (2)0.044 (2)-0.0054 (18)0.0012 (17)0.0018 (18)C50.035 (2)0.041 (2)0.039 (2)-0.0065 (18)0.0046 (16)0.0012 (17)C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.003 (2)0.000 (2)C70.031 (2)0.059 (3)0.040 (2)-0.0082 (19)-0.0008 (17)0.000 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.002 (2)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)0.006 (2)0.006 (3)C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.010 (3)0.003 (3)C110.093 (4)0.050 (3)0.066 (3)-0.006 (3)-0.017 (3)0.006 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.017 (3)0.008 (3)C130.075 (3)0.056 (3)0.060 (3)0.010 (3)0.014 (3)0.008 (2)	C3	0.062 (3)	0.063 (3)	0.049 (2)	-0.009 (3)	-0.008 (2)	-0.002 (2)
C50.035 (2)0.041 (2)0.039 (2)-0.0065 (18)0.0046 (16)0.0012 (17)C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.003 (2)0.000 (2)C70.031 (2)0.059 (3)0.040 (2)-0.0082 (19)-0.0008 (17)0.000 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.002 (2)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)0.006 (2)0.006 (3)C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.010 (3)0.003 (3)C110.093 (4)0.050 (3)0.066 (3)-0.006 (3)-0.017 (3)0.006 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.014 (3)0.008 (2)	C4	0.036 (2)	0.043 (2)	0.044 (2)	-0.0054 (18)	0.0012 (17)	0.0018 (18)
C60.053 (3)0.046 (3)0.056 (3)0.001 (2)-0.003 (2)0.000 (2)C70.031 (2)0.059 (3)0.040 (2)-0.0082 (19)-0.0008 (17)0.000 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.002 (2)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)0.006 (2)0.006 (3)C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.010 (3)0.003 (3)C110.093 (4)0.050 (3)0.066 (3)-0.006 (3)-0.017 (3)0.006 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.014 (3)0.008 (2)	C5	0.035 (2)	0.041 (2)	0.039 (2)	-0.0065 (18)	0.0046 (16)	0.0012 (17)
C70.031 (2)0.059 (3)0.040 (2)-0.0082 (19)-0.0008 (17)0.000 (2)C80.038 (2)0.056 (3)0.043 (2)-0.005 (2)-0.0028 (18)0.002 (2)C90.054 (3)0.069 (3)0.065 (3)0.016 (3)0.006 (2)0.006 (3)C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.010 (3)0.003 (3)C110.093 (4)0.050 (3)0.066 (3)-0.006 (3)-0.017 (3)0.006 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.017 (3)0.008 (3)C130.075 (3)0.056 (3)0.060 (3)0.010 (3)0.014 (3)0.008 (2)	C6	0.053 (3)	0.046 (3)	0.056 (3)	0.001 (2)	-0.003 (2)	0.000 (2)
C8 0.038 (2) 0.056 (3) 0.043 (2) -0.005 (2) -0.0028 (18) 0.002 (2) C9 0.054 (3) 0.069 (3) 0.065 (3) 0.016 (3) 0.006 (2) 0.006 (3) C10 0.076 (4) 0.060 (3) 0.092 (4) 0.021 (3) -0.010 (3) 0.003 (3) C11 0.093 (4) 0.050 (3) 0.066 (3) -0.006 (3) -0.017 (3) 0.006 (3) C12 0.109 (5) 0.066 (3) 0.056 (3) 0.001 (3) 0.017 (3) 0.008 (3) C13 0.075 (3) 0.056 (3) 0.060 (3) 0.010 (3) 0.014 (3) 0.008 (2)	C7	0.031 (2)	0.059 (3)	0.040 (2)	-0.0082 (19)	-0.0008 (17)	0.000 (2)
C9 0.054 (3) 0.069 (3) 0.065 (3) 0.016 (3) 0.006 (2) 0.006 (3) C10 0.076 (4) 0.060 (3) 0.092 (4) 0.021 (3) -0.010 (3) 0.003 (3) C11 0.093 (4) 0.050 (3) 0.066 (3) -0.006 (3) -0.017 (3) 0.006 (3) C12 0.109 (5) 0.066 (3) 0.056 (3) 0.001 (3) 0.017 (3) 0.008 (3) C13 0.075 (3) 0.056 (3) 0.060 (3) 0.010 (3) 0.014 (3) 0.008 (2)	C8	0.038 (2)	0.056 (3)	0.043 (2)	-0.005 (2)	-0.0028 (18)	0.002 (2)
C100.076 (4)0.060 (3)0.092 (4)0.021 (3)-0.010 (3)0.003 (3)C110.093 (4)0.050 (3)0.060 (3)-0.006 (3)-0.017 (3)0.006 (3)C120.109 (5)0.066 (3)0.056 (3)0.001 (3)0.017 (3)0.008 (3)C130.075 (3)0.056 (3)0.060 (3)0.010 (3)0.014 (3)0.008 (2)	C9	0.054 (3)	0.069 (3)	0.065 (3)	0.016 (3)	0.006 (2)	0.006 (3)
C11 0.093 (4) 0.050 (3) 0.060 (3) -0.006 (3) -0.017 (3) 0.006 (3) C12 0.109 (5) 0.066 (3) 0.056 (3) 0.001 (3) 0.017 (3) 0.008 (3) C13 0.075 (3) 0.056 (3) 0.060 (3) 0.010 (3) 0.014 (3) 0.008 (2)	C10	0.076 (4)	0.060 (3)	0.092 (4)	0.021 (3)	-0.010 (3)	0.003 (3)
C12 0.109 (5) 0.066 (3) 0.056 (3) 0.001 (3) 0.017 (3) 0.008 (3) C13 0.075 (3) 0.056 (3) 0.060 (3) 0.010 (3) 0.014 (3) 0.008 (2)	C11	0.093 (4)	0.050 (3)	0.060 (3)	-0.006 (3)	-0.017 (3)	0.006 (3)
C13 0.075 (3) 0.056 (3) 0.060 (3) 0.010 (3) 0.014 (3) 0.008 (2)	C12	0.109 (5)	0.066 (3)	0.056 (3)	0.001 (3)	0.017 (3)	0.008 (3)
	C13	0.075 (3)	0.056 (3)	0.060 (3)	0.010 (3)	0.014 (3)	0.008 (2)

Geometric parameters (Å, °)

OW—HWA	0.86 (4)	C4—C7	1.493 (6)
OW—HWB	0.87 (5)	C5—C6	1.369 (5)
O—C7	1.213 (4)	С6—Н6А	0.9300
N—C5	1.461 (5)	С7—С8	1.480 (6)
N—H0A	0.8900	C8—C13	1.379 (6)
N—H0B	0.8900	C8—C9	1.379 (6)
N—H0C	0.8900	C9—C10	1.369 (7)
C1—C2	1.372 (7)	С9—Н9А	0.9300
C1—C6	1.383 (6)	C10-C11	1.358 (7)
C1—H1A	0.9300	C10—H10A	0.9300
C2—C3	1.372 (6)	C11—C12	1.341 (7)
C2—H2A	0.9300	C11—H11A	0.9300
C3—C4	1.406 (6)	C12—C13	1.385 (7)
С3—НЗА	0.9300	C12—H12A	0.9300
C4—C5	1.391 (5)	C13—H13A	0.9300
HWB—OW—HWA	96 (3)	С5—С6—Н6А	119.9
C5—N—H0A	109.5	C1—C6—H6A	119.9
C5—N—H0B	109.5	О—С7—С8	120.6 (4)
H0A—N—H0B	109.5	O—C7—C4	118.4 (4)

C5—N—H0C	109.5	C8—C7—C4	121.0 (3)
H0A—N—H0C	109.5	C13—C8—C9	117.3 (4)
H0B—N—H0C	109.5	C13—C8—C7	123.3 (4)
C2—C1—C6	119.8 (5)	C9—C8—C7	119.4 (4)
C2—C1—H1A	120.1	C10—C9—C8	120.9 (5)
C6—C1—H1A	120.1	С10—С9—Н9А	119.5
C3—C2—C1	120.3 (4)	С8—С9—Н9А	119.5
С3—С2—Н2А	119.9	C11—C10—C9	121.1 (5)
C1—C2—H2A	119.9	C11—C10—H10A	119.5
C2—C3—C4	120.8 (4)	C9—C10—H10A	119.5
С2—С3—НЗА	119.6	C12—C11—C10	119.0 (5)
С4—С3—НЗА	119.6	C12-C11-H11A	120.5
C5—C4—C3	117.7 (4)	C10-C11-H11A	120.5
C5—C4—C7	120.8 (3)	C11—C12—C13	121.1 (5)
C3—C4—C7	121.4 (4)	C11-C12-H12A	119.5
C6—C5—C4	121.1 (4)	C13—C12—H12A	119.5
C6—C5—N	118.4 (3)	C8—C13—C12	120.6 (5)
C4—C5—N	120.4 (3)	C8—C13—H13A	119.7
C5—C6—C1	120.2 (4)	C12—C13—H13A	119.7
C6—C1—C2—C3	0.4 (8)	C3—C4—C7—C8	-48.7 (5)
C1—C2—C3—C4	-0.1 (7)	O—C7—C8—C13	169.0 (4)
C2—C3—C4—C5	-1.1 (6)	C4—C7—C8—C13	-10.3 (6)
C2—C3—C4—C7	-177.2 (4)	O—C7—C8—C9	-7.7 (6)
C3—C4—C5—C6	2.1 (6)	C4—C7—C8—C9	173.0 (4)
C7—C4—C5—C6	178.2 (4)	C13—C8—C9—C10	-0.1 (7)
C3—C4—C5—N	-177.1 (4)	C7—C8—C9—C10	176.9 (5)
C7—C4—C5—N	-1.0 (5)	C8—C9—C10—C11	1.3 (8)
C4—C5—C6—C1	-1.8 (6)	C9—C10—C11—C12	-1.2 (9)
N-C5-C6-C1	177.4 (4)	C10-C11-C12-C13	-0.1 (8)
C2—C1—C6—C5	0.5 (7)	C9—C8—C13—C12	-1.2 (7)
С5—С4—С7—О	-43.9 (5)	C7—C8—C13—C12	-178.0 (4)
С3—С4—С7—О	132.0 (4)	C11—C12—C13—C8	1.3 (8)
C5—C4—C7—C8	135.4 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$	
N—H0A…Cl	0.89	2.38	3.247 (3)	165	
N—H0B…Cl ⁱ	0.89	2.29	3.178 (3)	175	
N—H0C…OW	0.89	1.87	2.748 (5)	169	
OW—HWB…Cl ⁱⁱ	0.87 (5)	2.38 (3)	3.226 (4)	165 (5)	
OW—HWA…Cl ⁱⁱⁱ	0.86 (4)	2.35 (4)	3.204 (4)	176 (5)	
Symmetry codes: (i) $x-1$, y , z ; (ii) $-x+2$, $-y+1$, $-z+2$; (iii) $-x+1$, $-y+1$, $-z+2$.					

